Control based bifurcation analysis for experiments

نویسندگان

  • Jan Sieber
  • Bernd Krauskopf
چکیده

We introduce a method for tracking nonlinear oscillations and their bifurcations in nonlinear dynamical systems. Our method does not require a mathematical model of the dynamical system nor the ability to set its initial conditions. Instead it relies on feedback stabilizability, which makes the approach applicable in an experiment. This is demonstrated with a proofof-concept computer experiment of the classical autonomous dry-friction oscillator, where we use a fixed time step simulation and include noise to mimic experimental limitations. For this system we track in one parameter a family of unstable nonlinear oscillations that forms the boundary between the basins of attraction of a stable equilibrium and a stable stick-slip oscillation. Furthermore, we track in two parameters the curves of Hopf bifurcation and grazing-sliding bifurcation that form the boundary of the bistability region. The research of J.S. was supported by EPSRC grant GR/R72020/01, and that of B.K. by an EPSRC Advanced Research Fellowship. J. Sieber ( ) Department of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK e-mail: [email protected] B. Krauskopf Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, Queen’s Building, University of Bristol, Bristol BS8 1TR, UK

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vehicle Directional Stability Control Using Bifurcation Analysis of Yaw Rate Equilibrium

In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model with two degrees of freedom has been developed. Using the continuation software package MatCont a stability analysis based on phase plane analysis and bifurcation of equilibrium is perfo...

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System

In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...

متن کامل

A Comparative Study on the Formability Prediction of Two-Layer Metallic Sheets

Two-layer metallic sheets have wide applications in aerospace, marine, automotive and domestic industries due to their superlative characteristics. In this paper, the formability of two-layer sheet is investigated through analytical, experimental and numerical approaches. An analytical model is developed based on Marciniak-Kuczynski method associated Hill’s non-quadratic yield criterion. Formin...

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007